Elements of Gas Dynamics

Paperback
from $0.00

Author: H. W. Liepmann

ISBN-10: 0486419630

ISBN-13: 9780486419633

Category: Aeronautical Engineering - General & Miscellaneous

First-rate text covers introductory concepts from thermodynamics, one-dimensional gas dynamics and one-dimensional wave motion, waves in supersonic flow, flow in ducts and wind tunnels, methods of measurement, the equations of frictionless flow, small-perturbation theory, transonic flow, and much more. For advanced undergraduate or graduate physics and engineering students.

Search in google:

First-rate text covers introductory concepts from thermodynamics, one-dimensional gas dynamics and one-dimensional wave motion, waves in supersonic flow, flow in ducts and wind tunnels, methods of measurement, the equations of frictionless flow, small-perturbation theory, transonic flow, and much more. For advanced undergraduate or graduate physics and engineering students with at least a working knowledge of calculus and basic physics. Exercises demonstrate application of material in text. Booknews Intended for aeronautics students, this text will also be helpful to practicing engineers and scientists who work on problems involving the aerodynamics of compressible fluids. The book covers general principles of gas dynamics to provide a working understanding of the essentials of gas flow, explaining introductory concepts from thermodynamics including entropy, reciprocity relations, equilibrium conditions, the law of mass action and condensation, methods of measurement, transonic flow, and effects of viscosity and conductivity. This is an unabridged republication of a work published by John Wiley & Sons, Inc., New York, 1957. Annotation c. Book News, Inc., Portland, OR (booknews.com)

Chapter I. Concepts from thermodynamics  1.1 Introduction  1.2 Thermodynamic Systems  1.3 Variables of state  1.4 The first principal law  1.5 Irreversible and reversible processes  1.6 Perfect Gases  1.7 The first Law applied to reversible processes. Specific Heats  1.8 The first Law applied to irreversible processes  1.9 The concept of Entropy. The Second Law  1.10 The Canonical equation of state. Free energy and free enthalpy  1.11 Reciprocity relations  1.12 Entropy and transport processes  1.13 Equilibrium conditions  1.14 Mixtures of perfect gases  1.15 The law of mass action  1.16 Dissociation  1.17 Condensation  1.18 Real Gases in Gasdynamics Chapter 2. One-dimensional gasdynamics  2.1 Introduction  2.2 The continuity equation  2.3 The energy equation  2.4 Reservoir conditions  2.5 Euler's equation  2.6 The momentum equation  2.7 Isentropic conditions  2.8 Speed of sound; mach number  2.9 The Area-velocity relation  2.10 Results from the energy equation  2.11 Bernoulli equation; dynamic pressure  2.12 Flow at constant Area  2.13 The normal shock relations for a perfect Gas Chapter 3. One-dimensional Wave motion  3.1 Introduction  3.2 The propagating shock wave  3.3 One-dimensional isentropic equations  3.4 The Acoustic equations  3.5 Propagation of Acoustic Waves  3.6 The speed of sound  3.7 Pressure and Particle Velocity in a sound wave  3.8 "Linearized" shock tube  3.9 Isentropic Waves of Finite Amplitude  3.10 Propagation of Finite Waves  3.11 Centered Expansion Wave  3.12 The Shock Tube Chapter 4. Waves in supersonic flow  4.1 Introduction  4.2 Oblique shock waves  4.3 Relation between beta and theta  4.4 Supersonic flow over a wedge  4.5 Mach lines  4.6 Piston analogy  4.7 Weak oblique shocks  4.8 Supersonic compression by turning  4.9 Supersonic expansion by turning  4.10 The Prandtl-Meyer function  4.11 Simple and nonsimple regions  4.12 Reflection and intersection of oblique shocks  4.13 Intersection of Shocks of the same family  4.14 Detached shocks  4.15 Mach reflection  4.16 Shock-expansion theory  4.17 Thin airfoil theory  4.18 Flat lifting wings  4.19 Drag reduction  4.20 The Hodograph Plane  4.21 Cone in supersonic flow Chapter 5. Flow in ducts and wind tunnels  5.1 Introduction  5.2 Flow in Channel of Varying Area  5.3 Area Relations  5.4 Nozzle Flow  5.5 Normal Shock recovery  5.6 Effects of second throat  5.7 Actual performance of wind tunnel diffusers  5.8 Wind tunnel pressure ratio  5.9 Supersonic wind tunnels  5.10 Wind tunnel Characteristics  5.11 Compressor Matching  5.12 Other wind tunnels and testing methods Chapter 6. Methods of measurement  6.1 Introduction  6.2 Static pressure  6.3 Total pressure  6.4 Mach number from pressure measurements  6.5 Wedge and cone measurements  6.6 Velocity  6.7 Temperature and Heat transfer measurements  6.8 Density measurements  6.9 Index of refraction  6.10 Schlieren system  6.11 The knife edge  6.12 Some practical considerations  6.13 The shadow method  6.14 Interference method  6.15 Mach-Zehnder Interferometer  6.16 Interferometer Techniques  6.17 X-Ray absorption and other methods  6.18 Direct measurement of skin friction  6.19 Hot-wire probe  6.20 Shock tube instrumentation Chapter 7. The equations of frictionless flow  7.1 Introduction  7.2 Notation  7.3 The equation of continuity  7.4 The momentum equation  7.5 The energy equation  7.6 The eulerian derivative  7.7 Splitting the energy equation  7.8 The total enthalpy  7.9 Natural coordinates. Crocco's theorem  7.10 Relation of vorticity to circulation and rotation  7.11 The velocity potential  7.12 Irrotational flow  7.13 Remarks on the equations of motion Chapter 8. Small-perturbation theory  8.1 Introduction  8.2 Derivation of the Perturbation equations  8.3 Pressure coefficient  8.4 Boundary conditions  8.5 Two-dimensional flow past a wave-shaped wall  8.6 Wavy wall in supersonic flow  8.7 Supersonic thin airfoil theory  8.8 Planar flows Chapter 9. Bodies of revolution. Slender body theory  9.1 Introduction  9.2 Cylindrical coordinates  9.3 Boundary conditions  9.4 Pressure coefficient  9.5 Axially symmetric flow  9.6 Subsonic flow  9.7 Supersonic flow  9.8 Velocities in the Supersonic field  9.9 Solution for a Cone  9.10 Other meridian shapes  9.11 Solution for Slender Cone  9.12 Slender Body Drag  9.13 Yawed body of revolution in supersonic flow  9.14 Cross-flow boundary conditions  9.15 Cross-flow solutions  9.16 Cross flow for slender bodies of revolution  9.17 Lift of slender bodies of revolution  9.18 Slender body theory  9.19 Rayleigh's formula Chapter 10. The similarity rules of high-speed flow  10.1 Introduction  10.2 Two-dimensional linearized flow. Prandtl-Glauert and Göthert rules  10.3 Two-dimensional transonic flow. von Kármán's rules  10.4 Linearized axially symmetric flow  10.5 Planar flow  10.6 Summary and application of the similarity laws  10.7 High mach numbers. Hypersonic similarity Chapter 11. Transonic flow  11.1 Introduction  11.2 Definition of the transonic range  11.3 Transonic flow past wedge sections  11.4 Transonic flow past a cone  11.5 Transonic flow past smooth two-dimensional shapes. The question of shock-free flow  11.6 The hodograph transformation of the equations Chapter 12. The method of characteristics  12.1 Introduction  12.2 Hyperbolic equations  12.3 The compatibility relation  12.4 The computation method  12.5 Interior and boundary points  12.6 Axially symmetric flow  12.7 Nonisentropic flow  12.8 Theorems about Plane flow  12.9 Computation with weak, finite waves  12.10 Interaction of waves  12.11 Design of supersonic nozzles  12.12 Comparison of characteristics and waves Chapter 13. Effects of viscosity and conductivity  13.1 Introduction  13.2 Couette flow  13.3 Recovery temperature  13.4 Velocity distribution in couette flow  13.5 Rayleigh's problem. The diffusion of vorticity  13.6 The boundary-layer concept  13.7 Prandtl's equations for a flat plate  13.8 Characteristic results from the boundary-layer equation  13.9 The displacement effect of the boundary layer. Momentum and energy integrals  13.10 Change of variables  13.11 Boundary layers of profiles other than a flat plate  13.12 Flow through a shock wave  13.13 The Navier-Stokes equations  13.14 The turbulent boundary layer  13.15 Boundary-layer effects on the external flow field  13.16 Shock-wave boundary-layer interaction  13.17 Turbulence  13.18 Couette flow of a dissociating gas Chapter 14. Concepts from gaskinetics  14.1 Introduction  14.2 Probability conc  14.9 Shear viscosity and heat conduction  14.10 Couette flow of a highly rarefied gas  14.11 The concepts of slip and accommodation  14.12 Relaxation effects of the internal degrees of freedom  14.13 The limit of continuum theory  Exercises; Selected references; Tables1. Critical Data and characteristic temperatures for several gases2. Flow parameters versus M for Subsonic flow3. Flow parameters versus M for supersonic flow4. Parameters for shock flow5. Mach number and Mach angle versus Prandtl-Meyer function  Charts1, 2 Oblique shock chart  Appendix, Index

\ Intended for aeronautics students, this text will also be helpful to practicing engineers and scientists who work on problems involving the aerodynamics of compressible fluids. The book covers general principles of gas dynamics to provide a working understanding of the essentials of gas flow, explaining introductory concepts from thermodynamics including entropy, reciprocity relations, equilibrium conditions, the law of mass action and condensation, methods of measurement, transonic flow, and effects of viscosity and conductivity. This is an unabridged republication of a work published by John Wiley & Sons, Inc., New York, 1957. Annotation c. Book News, Inc., Portland, OR (booknews.com)\ \