Evolution Through Genetic Exchange

Hardcover
from $0.00

Author: Michael L. Arnold

ISBN-10: 0198570066

ISBN-13: 9780198570066

Category: Evolution

Search in google:

Even before the publication of Darwin's Origin of Species, the perception of evolutionary change has been a tree-like pattern of diversification - with divergent branches spreading further and further from the trunk. In the only illustration of Darwin's treatise, branches large and small never reconnect. However, it is now evident that this view does not adequately encompass the richness of evolutionary pattern and process. Instead, the evolution of species from microbes to mammals builds like a web that crosses and re-crosses through genetic exchange, even as it grows outward from a point of origin. Some of the avenues for genetic exchange, for example introgression through sexual recombination versus lateral gene transfer mediated by transposable elements, are based on definably different molecular mechanisms. However, even such widely different genetic processes may result in similar effects on adaptations (either new or transferred), genome evolution, population genetics, and the evolutionary/ecological trajectory of organisms. For example, the evolution of novel adaptations (resulting from lateral gene transfer) leading to the flea-borne, deadly, causative agent of plague from a rarely-fatal, orally-transmitted, bacterial species is quite similar to the adaptations accrued from natural hybridization between annual sunflower species resulting in the formation of several new species. Thus, more and more data indicate that evolution has resulted in lineages consisting of mosaics of genes derived from different ancestors. It is therefore becoming increasingly clear that the tree is an inadequate metaphor of evolutionary change. In this book, Arnold promotes the 'web-of-life' metaphor as a more appropriate representation of evolutionary change in all lifeforms.

History of investigations     1Pre-Darwin, Darwin, the Modern Synthesis and genetic exchange: development of a paradigm     1Post-Modern Synthesis: case studies of genetic exchange     5Louisiana irises     5Plague     11Darwin's finches     13Influenza     18Summary and conclusions     21The role of species concepts     23Species concepts and understanding genetic exchange     23Genetic exchange considered through four species concepts     24Biological species concept     24Phylogenetic species concept     28Cohesion species concept     30Prokaryotic species concept     31Summary and conclusions     33Testing the hypothesis     34Genetic exchange as a testable hypothesis     34Controversy over genetic exchange: examples from oaks     35North American oaks     35European oaks     37Methods to test for genetic exchange     38Concordance across data sets: hybrid zone analyses     38Phylogenetic discordance     47Gene genealogies and models of speciation     55Intragenomicdivergence     57Nested clade analysis     59Summary and conclusions     61Barriers to gene flow     62Barriers to exchange form a multi-stage process     62Genetic exchange: Louisiana irises and reproductive barriers     63Ecological setting as a barrier     63Gamete competition as a barrier     65Hybrid viability as a barrier     66Hybrid fertility as a barrier     67Genetic exchange: five stages of reproductive isolation     67Ecological setting     67Behavioral characteristics     72Gamete competition     76Hybrid viability     77Hybrid fertility     79Summary and conclusions     81Hybrid fitness     82Components of hybrid fitness     82Genetic exchange and fitness: microorganisms     84Mycobacterium tuberculosis     84Legionella pneumophila     85Brazilian purpuric fever     86Entamoeba histolytica     87Bacterial viruses     90Yeast     91Salmonella     92Genetic exchange and fitness: plants      93Ipomopsis     93Louisiana irises     94Helianthus     96Artemisia     97Populus     98Hawaiian Silversword complex     101Salix     101Genetic exchange and fitness: animals     102Bombina     102Rana     103Cichlids     104Whitefish, redfish, and charr     105Flycatchers     106Manakins     107Summary and conclusions     108Gene duplication     109Gene duplication and evolution     109Genetic exchange: genomewide evolution following duplication     110Genomewide effects-epigenetic changes through methylation     110Genomewide effects-activation of transposable elements     112Genomewide effects-genome downsizing     114Genomewide effects-chromosome rearrangements     115Genetic exchange: gene and gene family evolution following duplication     116Genes and gene families: concerted evolution     116Genes and gene families: changes in gene expression patterns and function     119Genes and gene families: evolution of adaptations     120Genetic exchange: genome duplication and adaptive radiations     121Duplication and adaptive radiation: the vertebrate lineage     121Duplication and adaptive radiation: the fish clade     122Summary and conclusions     122Origin of new evolutionary lineages     123Viral recombination, lateral transfer, natural hybridization, and evolutionary diversification     123Natural hybridization, allopolyploidy, and evolutionary diversification in non-flowering plants     125Ferns     125Bryophytes     127Natural hybridization, allopolyploidy, and evolutionary diversification in flowering plants     128Draba     128Paeonia     129Glycine     131Spartina     132Natural hybridization, allopolyploidy, and evolutionary diversification in animals     133Parthenogenesis     133Gynogenesis     137Sexually reproducing, allopolyploid animals     139Natural hybridization, homoploidy, and evolutionary diversification     141Evolution by homoploid hybrid lineage formation in plants     141Evolution by homoploid hybrid lineage formation in animals-parthenogenetic and hybridogenetic taxa     144Evolution by homoploid hybrid lineage formation in animals-sexually reproducing taxa     145Viral recombination, lateral exchange, introgressive hybridization, and evolutionary diversification in microorganisms     147Viral recombination, lateral exchange, and the evolution of bacteriophages     147Lateral exchange and the evolution of bacterial lineages     148Introgressive hybridization and the evolution of the protozoan genus Trypanosoma     149Summary and conclusions     150Implications for endangered taxa     151Introgressive hybridization and the conservation and restoration of endangered taxa     151Introgressive hybridization involving endangered plant taxa     152Eucalyptus     152Carpobrotus     154Taraxacum     156Introgressive hybridization involving endangered animal taxa     157Felidae     157African elephants     159Aves     160Summary and conclusions     163Humans and associated lineages     164The role of genetic exchange in the evolutionary history of humans and their food, drugs, clothing, and diseases     164Introgressive hybridization and the evolution of Homo sapiens     165Hominoids     165Introgressive hybridization, hybrid speciation, and the evolution of human food sources     169Animals     169Plants     171Introgressive hybridization, hybrid speciation, and the evolution of human drugs     174Coffee     174Chocolate     175Tobacco     176Introgressive hybridization, hybrid speciation, and the evolution of pathogens of plants utilized by humans     176Phytophthora     176Dutch elm disease     177Erwinia carotovora     178Introgressive hybridization, hybrid speciation, and the evolution of human clothing materials     179Leather     179Deer skin     180Cotton     181Introgressive hybridization, hybrid speciation, and the evolution of human disease vectors     182Anopheles funestus     182Culex pipiens     183Lateral transfer and the evolution of human diseases     183Propionibacterium acnes     183Burkholderia pseudomallei     183Human-mediated genetic exchange     185Summary and conclusions     186Emergent properties     187Genetic exchange is pervasive     187Genetic exchange: research directions      189Glossary     191Reference     194Index     235