High-Performance Gradient Elution: The Practical Application of the Linear-Solvent-Strength Model

Hardcover
from $0.00

Author: Lloyd R. Snyder

ISBN-10: 0471706469

ISBN-13: 9780471706465

Category: Clinical Medicine

Gradient elution demystified\ Of the various ways in which chromatography is applied today, few have been as misunderstood as the technique of gradient elution, which presents many challenges compared to isocratic separation. When properly explained, however, gradient elution can be less difficult to understand and much easier to use than often assumed.\ Written by two well-known authorities in liquid chromatography, High-Performance Gradient Elution: The Practical Application of the...

Search in google:

Gradient elution demystifiedOf the various ways in which chromatography is applied today, few have been as misunderstood as the technique of gradient elution, which presents many challenges compared to isocratic separation. When properly explained, however, gradient elution can be less difficult to understand and much easier to use than often assumed.Written by two well-known authorities in liquid chromatography, High-Performance Gradient Elution: The Practical Application of the Linear-Solvent-Strength Model takes the mystery out of the practice of gradient elution and helps remove barriers to the practical application of this important separation technique. The book presents a systematic approach to the current understanding of gradient elution, describing theory, methodology, and applications across many of the fields that use liquid chromatography as a primary analytical tool. This up-to-date, practical, and comprehensive treatment of gradient elution:Provides specific, step-by-step recommendations for developing a gradient separation for any sampleDescribes the best approach for troubleshooting problems with gradient methodsGuides the reader on the equipment used for gradient elutionLists which conditions should be varied first during method development, and explains how to interpret scouting gradientsExplains how to avoid problems in transferring gradient methodsWith a focus on the use of linear solvent strength (LSS) theory for predicting gradient LC behavior and separations by reversed-phase HPLC, High-Performance Gradient Elution gives every chromatographer access to this useful tool.

Preface     xvGlossary of Symbols and Terms     xxiIntroduction     1The "General Elution Problem" and the Need for Gradient Elution     1Other Reasons for the Use of Gradient Elution     4Gradient Shape     7Similarity of Isocratic and Gradient Elution     10Gradient and Isocratic Elution Compared     10The Linear-Solvent-Strength Model     13Computer Simulation     18Sample Classification     19Sample Compounds of Related Structure ("Regular Samples")     19Sample Compounds of Unrelated Structure ("Irregular" Samples)     19Gradient Elution Fundamentals     23Isocratic Separation     23Retention     23Peak Width and Plate Number     24Resolution     25Role of Separation Conditions     27Optimizing Retention [Term a of Equation (2.7)]     27Optimizing Selectivity [alpha] [Term b of Equation (2.7)]     28Optimizing the Column Plate Number N [Term c of Equation (2.7)]     28Gradient Separation     31Retention     32Gradient and Isocratic Separation Compared for "Corresponding" Conditions     34Peak Width     38Resolution     39Resolution as a Function of Values of S for Two Adjacent Peaks ("Irregular" Samples)     42Using Gradient Elution to Predict Isocratic Separation     45Sample Complexity and Peak Capacity     47Effect of Gradient Conditions on Separation     49Gradient Steepness b: Change in Gradient Time     50Gradient Steepness b: Change in Column Length or Diameter     51Gradient Steepness b: Change in Flow Rate     55Gradient Range [delta phi]: Change in Initial Percentage B ([phi subscript 0])     58Gradient Range [delta phi]: Change in Final Percentage B ([delta subscript f])     60Effect of a Gradient Delay     63Equipment Dwell Volume     66Effect of Gradient Shape (Nonlinear Gradients)     67Overview of the Effect of Gradient Conditions on the Chromatogram     71Related Topics     72Nonideal Retention in Gradient Elution     72Gradient Elution Misconceptions     72Method Development     74A Systematic Approach to Method Development     74Separation Goals (Step 1 of Fig. 3.1)     75Nature of the Sample (Step 2 of Fig. 3.1)      78Initial Experimental Conditions     79Repeatable Results     79Computer Simulation: Yes or No?     80Sample Preparation (Pretreatment)     81Initial Experiments     81Interpreting the Initial Chromatogram (Step 3 of Fig. 3.1)     85"Trimming" a Gradient Chromatogram     87Possible Problems     88Developing a Gradient Separation: Resolution versus Conditions     90Optimizing Gradient Retention k* (Step 4 of Fig. 3.1)     92Optimizing Gradient Selectivity [alpha]* (Step 5 of Fig. 3.1)     92Optimizing the Gradient Range (Step 6 of Fig. 3.1)     95Changes in Selectivity as a Result of Change in k*     96Segmented (Nonlinear) Gradients (Step 6 of Fig. 3.1 Continued)     100Optimizing the Column Plate Number N* (Step 7 of Fig. 3.1)     102Column Equilibration Between Successive Sample Injections     106Fast Separations     106Computer Simulation     108Quantitative Predictions and Resolution Maps     109Gradient Optimization     111Changes in Column Conditions     112Separation of "Regular" Samples     114Other Features     115Isocratic Prediction (5 in Table 3.5)     115Designated Peak Selection (6 in Table 3.5)     117Change in Other Conditions (7 in Table 3.5)     117Computer-Selection of the Best Multisegment Gradient (8 in Table 3.5)     117"Two-Run" Procedures for the Improvement of Sample Resolution     119Accuracy of Computer Simulation     119Peak Tracking     119Method Reproducibility and Related Topics     120Method Development     121Routine Analysis     122Change in Column Volume     123Additional Means for an Increase in Separation Selectivity     124Orthogonal Separations     127Two-Dimensional Separations     128Gradient Equipment     133Gradient System Design     133High-Pressure vs Low-Pressure Mixing     133Tradeoffs     135Dwell Volume     135Degassing     136Accuracy     137Solvent Volume Changes and Compressibility     137Flexibility     139Independent Module Use     140Other System Components     140Autosampler     140Column      140Detector     141Data System     141Extra-Column Volume     142General Considerations in System Selection     142Which Vendor?     143High-Pressure or Low-Pressure Mixing?     144Who Will Fix It?     144Special Applications     144Measuring Gradient System Performance     145Gradient Performance Test     146Gradient Linearity     146Dwell Volume Determination     147Gradient Step-Test     147Gradient Proportioning Valve Test     148Additional System Checks     149Flow Rate Check     149Pressure Bleed-Down     150Retention Reproducibility     150Peak Area Reproducibility     151Dwell Volume Considerations     151Separation Artifacts and Troubleshooting     153Avoiding Problems     154Equipment Checkout     157Installation Qualification, Operational Qualification, and Performance Qualification     157Dwell Volume     158Blank Gradient     158Suggestions for Routine Applications     158Reagent Quality      159System Cleanliness     159Degassing     159Dedicated Columns     159Equilibration     159Priming Injections     159Ignore the First Injection     160System Suitability     160Standards and Calibrators     160Method Development     160Use a Clean and Stable Column     160Use Reasonable Mobile Phase Conditions     161Clean Samples     162Reproducible Runs     162Sufficient Equilibration     162Reference Conditions     162Additional Tests     162Method Transfer     163Compensating for Dwell Volume Differences     163Injection Delay     163Adjustment of the Initial Isocratic Hold     164Use of Maximum-Dwell-Volume Methods     165Adjustment of Initial Percentage B     165Other Sources of Method Transfer Problems     168Gradient Shape     169Gradient Rounding     169Inter-Run Equilibration     169Column Size     169Column Temperature     169Interpretation of Method Instructions      170Column Equilibration     170Primary Effects     171Slow Equilibration of Column and Mobile Phase     173Practical Considerations and Recommendations     174Separation Artifacts     175Baseline Drift     176Baseline Noise     179Baseline Noise: A Case Study     180Peaks in a Blank Gradient     182Mobile Phase Water or Organic Solvent Impurities     182Other Sources of Background Peaks     185Extra Peaks for Injected Samples     185t[subscript 0] Peaks     185Air Peaks     186Late Peaks     187Peak Shape Problems     188Tailing and Fronting     188Excess Peak Broadening     188Split Peaks     190Injection Conditions     191Sample Decomposition     193Troubleshooting     195Problem Isolation     196Troubleshooting and Maintenance Suggestions     197Removing Air from the Pump     197Solvent Siphon Test     197Premixing to Improve Retention Reproducibility in Shallow Gradients     198Cleaning and Handling Check-Valves     199Replacing Pump Seals and Pistons     200Leak Detection     200Repairing Fitting Leaks     200Cleaning Glassware     201For Best Results with TFA     201Improved Water Purity     201Isolating Carryover Problems     203Troubleshooting Rules of Thumb     204Gradient Performance Test Failures     206Linearity (4.3.1.1)     206Step Test (4.3.1.3)     206Gradient-Proportioning-Valve Test (4.3.1.4)     209Flow Rate (4.3.2.1)     211Pressure Bleed-Down (4.3.2.2)     212Retention Reproducibility (4.3.2.3)     212Peak Area Reproducibility (4.3.2.4)     213Troubleshooting Case Studies     213Retention Variation - Case Study 1     213Retention Variation - Case Study 2     218Contaminated Reagents - Case Study 3     220Baseline and Retention Problems - Case Study 4     224Separation of Large Molecules     228General Considerations     228Values of S for Large Molecules     229Values of N* for Large Molecules     235Conformational State      236Homo-Oligomeric Samples     238Separation of Large Homopolymers     241Proposed Models for the Gradient Separation of Large Molecules     242"Critical Elution Behavior": Biopolymers     246Measurement of LSS Parameters for Large Molecules     247Biomolecules     248Peptides and Proteins     248Sample Characteristics     249Conditions for an Initial Gradient Run     249Method Development     253Segmented Gradients     259Other Separation Modes and Samples     261Hydrophobic Interaction Chromatography     262Ion Exchange Chromatography     264Hydrophilic Interaction Chromatography     266Separation of Viruses     267Separation Problems     271Fast Separations of Peptides and Proteins     274Two-Dimensional Separations of Peptides and Proteins     274Synthetic Polymers     275Determination of Molecular Weight Distribution     277Determination of Chemical Composition     278Preparative Separations     283Introduction     283Equipment for Preparative Separation      285Isocratic Separation     286Touching-Peak Separation     287Theory     287Column Saturation Capacity     289Sample-Volume Overload     292Method Development for Isocratic Touching-Peak Separation     292Optimizing Separation Conditions     295Selecting a Sample Weight for Touching-Peak Separation     297Scale-Up     298Sample Solubility     300Beyond Touching-Peak Separation     301Gradient Separation     302Touching-Peak Separation     306Method Development for Gradient Touching-Peak Separation     306Step Gradients     311Sample-Volume Overload     312Possible Complications of Simple Touching-Peak Theory and Their Practical Impact     312Crossing Isotherms     313Unequal Values of S     314Severely Overloaded Separation     315Is Gradient Elution Necessary?     316Displacement Effects     317Method Development     317Separations of Peptides and Small Proteins     318Column Efficiency     320Production-Scale Separation     320Other Applications of Gradient Elution     323Gradient Elution for LC-MS     324Application Areas     325Requirements for LC-MS     325Basic LC-MS Concepts     326The Interface     326Column Configurations     328Quadrupoles and Ion Traps     328LC-UV vs LC-MS Gradient Conditions     330Method Development for LC-MS     332Define Separation Goals (Step 1, Table 8.2)     332Collect Information on Sample (Step 2, Table 8.2)     334Carry Out Initial Separation (Run 1, Step 3, Table 8.2)     339Optimize Gradient Retention k* (Step 4, Table 8.2)     339Optimize Selectivity [alpha]* (Step 5, Table 8.2)     339Adjust Gradient Range and Shape (Step 6, Table 8.2)     340Vary Column Conditions (Step 7, Table 8.2)     341Determine Inter-Run Column Equilibration (Step 8, Table 8.2)     341Special Challenges for LC-MS     341Dwell Volume     342Gradient Distortion     342Ion Suppression     343Co-Eluting Compounds     345Resolution Requirements     346Use of Computer Simulation Software     347Isocratic Methods      347Throughput Enhancement     347Ion-Exchange Chromatography     349Theory     349Dependence of Separation on Gradient Conditions     356Method Development for Gradient IEC     356Choice of Initial Conditions     356Improving the Separation     357Normal-Phase Chromatography     359Theory     359Method Development for Gradient NPC     360Hydrophilic Interaction Chromatography     361Method Development for Gradient HILIC     361Ternary- or Quaternary-Solvent Gradients     365Theory and Derivations     370The Linear Solvent Strength Model     370Retention     372Gradient and Isocratic Retention Compared     374Small Values of k[subscript 0]     376Peak Width     378Gradient Compression     380Selectivity and Resolution     383Advantages of LSS Behavior     385Second-Order Effects     386Assumptions About [phi] and k     386Incomplete Column Equilibration     386Solvent Demixing     391Nonlinear Plots of log k vs [phi]      393Dependence of V[subscript m] on [phi]     393Nonideal Equipment     393Accuracy of Gradient Elution Predictions     397Gradient Retention Time     397Confirmation of Equation (9.2)     397Computer Simulation     399Peak Width Predictions     399Measurement of Values of S and log k[subscript 0]     400Values of S     401Estimating Values of S from Solute Properties and Experimental Conditions     402Values of N in Gradient Elution     404The Constants Approximation in Gradient Elution     414Estimation of Conditions for Isocratic Elution, Based on an Initial Gradient Run     416Characterization of Reversed-Phase Columns for Selectivity and Peak Tailing     418Solvent Properties Relevant to the Use of Gradient Elution     434Theory of Preparative Separation     436Further Information on Virus Chromatography     445Index     450

\ From the Publisher"This book is clear, well written, and easy to understand despite the complexity of the subject." (Journal of the American Chemical Society, July 2007)\ \ \