Mechanical Behaviour of Engineering Materials

Hardcover
from $0.00

Author: J. Roesler

ISBN-10: 3540734465

ISBN-13: 9783540734468

Category: Polymers & Polymerization Engineering

Search in google:

How do engineering materials deform when bearing mechanical loads? To answer this crucial question, the book bridges the gap between continuum mechanics and materials science. The different kinds of material deformation (elasticity, plasticity, fracture, creep, fatigue) are explained in detail. The book also discusses the physical processes occurring during the deformation of all classes of engineering materials (metals, ceramics, polymers, and composites) and shows how these materials can be strengthened to meet the design requirements. It provides the knowledge needed in selecting the appropriate engineering material for a certain design problem. The reader will thus learn how to critically employ design rules and thus to avoid failure of mechanical components.‘Mechanical Behaviour of Engineering Materials’ is both a valuable textbook and a useful reference for graduate students and practising engineers.

The structure of materials     1Atomic structure and the chemical bond     1Metals     5Metallic bond     5Crystal structures     7Polycrystalline metals     14Ceramics     15Covalents bond     16Ionic bond     18Dipole bond     19Van der Waals bond     19Hydrogen bond     20The crystal structure of ceramics     21Amorphous ceramics     22Polymers     23The chemical structure of polymers     24The structure of polymers     25Elasticity     31Deformation modes     31Stress and strain     32Stress     32Strain     34Atomic interactions     37Hooke's law     39Elastic strain energy     42Elastic deformation under multiaxial loads     43Isotropic material     46Cubic lattice     50Orthorhombic crystals and orthotropic elasticity     53Transversally isotropic elasticity     54Other crystal lattices     55Examples     55Isotropy and anisotropy of macroscopic components     57Temperature dependence of Young's modulus     60Plasticity and failure     63Nominal and true strain     64Stress-strain diagrams     68Types of stress-strain diagrams     68Analysis of a stress-strain diagram     73Approximation of the stress-strain curve     81Plasticity theory     83Yield criteria     84Yield criteria of metals     86Yield criteria of polymers     92Flow rules     93Hardening     97Application of a yield criterion, flow rule, and hardening rule     103Hardness     107Scratch tests     108Indentation tests     108Rebound tests     110Material failure     110Shear fracture     111Cleavage fracture     114Fracture criteria     116Notches     119Stress concentration factor     119Neuber's rule     122Tensile testing of notched specimens     125Fracture mechanics     129Introduction to fracture mechanics     129Definitions     129Linear-elastic fracture mechanics     131The stress field near a crack tip     131The energy balance of crack propagation     134Dimensioning pre-cracked components under static loads     142Fracture parameters of different materials     144Material behaviour during crack propagation     146Subcritical crack propagation     150Measuring fracture parameters     152Elastic-plastic fracture mechanics     158Crack tip opening displacement (CTOD)     158J integral     159Material behaviour during crack propagation     161Measuring elastic-plastic fracture mechanics parameters     163Mechanical behaviour of metals     165Theoretical strength     165Dislocations     166Types of dislocations     166The stress field of a dislocation     168Dislocation movement     170Slip systems     173The critical resolved shear stress     178Taylor factor     182Dislocation interaction     184Generation, multiplication and annihilation of dislocations      185Forces acting on dislocations     187Overcoming obstacles     189Athermal processes     190Thermally activated processes     193Ductile-brittle transition     196Climb     196Intersection of dislocations     197Strengthening mechanisms     198Work hardening     198Grain boundary strengthening     200Solid solution hardening     203Particle strengthening     209Hardening of steels     218Mechanical twinning     223Mechanical behaviour of ceramics     227Manufacturing ceramics     228Mechanisms of crack propagation     229Crack deflection     230Crack bridging     230Microcrack formation and crack branching     231Stress-induced phase transformations     232Stable crack growth     234Subcritical crack growth in ceramics     234Statistical fracture mechanics     236Weibull statistics     236Weibull statistics for subcritical crack growth     242Measuring the parameters [sigma subscript 0] and m     243Proof test     246Strengthening ceramics     248Reducing defect size     249Crack deflection     249Microcracks     251Transformation toughening     252Adding ductile particles     255Mechanical behaviour of polymers     257Physical properties of polymers     257Relaxation processes     257Glass transition temperature     260Melting temperature     261Time-dependent deformation of polymers     263Phenomenological description of time-dependence     263Time-dependence and thermal activation     266Elastic properties of polymers     269Elastic properties of thermoplastics     269Elastic properties of elastomers and duromers     273Plastic behaviour     274Amorphous thermoplastics     275Semi-crystalline thermoplastics     281Increasing the thermal stability     284Increasing the glass and the melting temperature     284Increasing the crystallinity     287Increasing strength and stiffness     289Increasing the ductility     290Environmental effects      292Mechanical behaviour of fibre reinforced composites     295Strengthening methods     296Classifying by particle geometry     296Classifying by matrix systems     299Elasticity of fibre composites     300Loading in parallel to the fibres     301Loading perpendicular to the fibres     301The anisotropy in general     302Plasticity and fracture of composites     303Tensile loading with continuous fibres     303Load transfer between matrix and fibre     305Crack propagation in fibre composites     308Statistics of composite failure     312Failure under compressive loads     313Matrix-dominated failure and arbitrary loads     315Examples of composites     315Polymer matrix composites     315Metal matrix composites     321Ceramic matrix composites     323Biological composites     325Fatigue     333Types of loads     333Fatigue failure of metals     337Crack initiation     338Crack propagation (stage II)     342Final fracture     344Fatigue of ceramics     345Fatigue of polymers     346Thermal fatigue     346Mechanical fatigue     347Fatigue of fibre composites     347Phenomenological description of the fatigue strength     349Fatigue crack growth     349Stress-cycle diagrams (S-N diagrams)     357The role of mean stress     366Fatigue assessment with variable amplitude loading     368Cyclic stress-strain behaviour     369Kitagawa diagram     373Fatigue of notched specimens     375Creep     383Phenomenology of creep     383Creep mechanisms     388Stages of creep     388Dislocation creep     389Diffusion creep     393Grain boundary sliding     396Deformation mechanism maps     396Creep fracture     400Increasing the creep resistance     401Exercises     407Packing density of crystals     407Macromolecules     407Interaction between two atoms     407Bulk modulus     408Relation between the elastic constants      408Candy catapult     409True strain     410Interest calculation     410Large deformations     410Yield criteria     410Yield criteria of polymers     411Design of a notched shaft     411Estimating the fracture toughness K[subscript Ic]     412Determination of the fracture toughness K[subscript Ic]     412Static design of a tube     413Theoretical strength     414Estimating the dislocation density     414Thermally activated dislocation generation     414Work hardening     415Grain boundary strengthening     415Precipitation hardening     415Weibull statistics     415Design of a fluid tank     416Subcritical crack growth of a ceramic component     417Mechanical models of viscoelastic polymers     417Elastic damping     418Eyring plot     418Elasticity of fibre composites     419Properties of a polymer matrix composite     419Estimating the number of cycles to failure     419Miner's rule     420Larson-Miller parameter      421Creep deformation     421Relaxation of thermal stresses by creep     421Solution     423Using tensors     451Introduction     451The order of a tensor     451Tensor notations     452Tensor operations and Einstein summation convention     453Coordinate transformations     456Important constants and tensor operations     457Invariants     458Derivations of tensor fields     459Miller and Miller-Bravais indices     461Miller indices     461Miller-Bravais indices     462A crash course in thermodynamics     465Thermal activation     465Free energy and free enthalpy     466Phase transformations and phase diagrams     468The J integral     473Discontinuities, singularities, and Gauss' theorem     473Energy-momentum tensor     475J integral     476J integral at a crack tip     479Plasticity at the crack tip     481Energy interpretation of the J integral     482References     485List of symbols      493Index     499