Oil Spill Environmental Forensics: Fingerprinting and Source Identification

Hardcover
from $0.00

Author: Zhendi Wang

ISBN-10: 0123695236

ISBN-13: 9780123695239

Category: Environmental Engineering - General & Miscellaneous

Oil Spill Environmental Forensics provides a complete view of the various forensic techniques used to identify the source of an oil spill into the environment. The forensic procedures described within represent various methods from scientists throughout the world. The authors explore which analytical and interpretative techniques are best suited for a particular oil spill project. \ This handy reference also explores the use of these techniques in actual environmental oil spills. Famous...

Search in google:

Oil Spill Environmental Forensics provides a complete view of the various forensic techniques used to identify the source of an oil spill into the environment. The forensic procedures described within represent various methods from scientists throughout the world. The authors explore which analytical and interpretative techniques are best suited for a particular oil spill project. This handy reference also explores the use of these techniques in actual environmental oil spills. Famous incidents discussed include the Exxon Valdez incident in 1989 and the Guanabara Bay, Brazil 2000. The authors chronicle both the successes and failures of the techniques used for each of these events. Dr. Zhendi Wang is a senior research scientist and Head of Oil Spill Research of Environment Canada, working in the oil and toxic chemical spill research field. He has authored over 270 academic publications and won a number of national and international scientific honors and awards. Dr. Wang is a member of American Chemical Society (ACS), the Canadian Society for Chemistry (CSC), and the International Society of Environmental Forensics (ISEF).*International experts show readers the forensic techniques used in oil spill investigations*Provides the theoretical basis and practical applications for investigative techniques*Contains numerous case studies demonstrating proven techniques

Preface     xlviiContributors     xlixChemical Fingerprinting of Spilled or Discharged Petroleum - Methods and Factors Affecting Petroleum Fingerprints in the Environment     1Introduction     1Methods for Chemical Fingerprinting Petroleum     3Historical Perspective     3Tier 1 - Chemical Fingerprinting via GC/FID     6Tier 2 - Chemical Fingerprinting via GC/MS     7Polycyclic Aromatic Hydrocarbons     8Petroleum Biomarkers     9Quality Assurance and Quality Control     10Quality Control     10Quality Assurance     10Factors Controlling the Chemical Fingerprints of Spilled or Discharged Petroleum     11Primary Control - Crude Oil Genesis     13Secondary Controls - Petroleum Refining     18Gasoline     21Distillate Fuels     22Residual Fuels     27Lubricating Oils     28Oily Waste/Bilge Water Discharges     28Tertiary Controls - Weathering     29Evaporation     30Dissolution     32Biodegradation     32Photooxidation     34Mousse Formation     34De-Waxing and Wax Enrichment     34Tertiary Controls-Mixing with "Background"     36What Is "Background"?     36Recognizing and Establishing Background     37Naturally Occurring Background Hydrocarbons     37Vascular Plant and Algal Debris     38Particulate Coal and Wood Charcoal     39Natural Oil Seeps     41Anthropogenic Background Hydrocarbons     41Urban and River Runoff     42Summary     43References     45Spill Site Investigation in Environmental Forensic Investigation     55Introduction     55Environmental Site Characterization and Reconnaissance Survey     55Site Entry and Safety Issues during the Emergency Response Phase     57Management of Safety     57Risk Assessment and Characterization     58Chemical Toxicity of the Spilled Oil     59Working Environment Safety     60Personal Protective Equipment (PPE)     60Determination of Geographic Boundary and Definition of Different Zones within the Affected Area: 1. Terrestrial Oil Spills     61Determination of Geographic Boundary and Definition of Different Zones within the Affected Area: 2. Marine/Coastal Waterborne Oil Spills     62Collection of Physical, Ecological, and Environmental Data     63Sampling Plan and Design: 1. Spills with Known Source     64Water Column Sampling     64Oil Source Sampling     65Sampling on Land     65Sampling Plan Design     65Sampling Plan and Design: 2. "Mystery" Spills     66Data Management     67Conclusions     71References     71Petroleum Biomarker Fingerprinting for Oil Spill Characterization and Source Identification     73Introduction     73Analytical Methodologies for Petroleum Biomarker Fingerprinting     74Petroleum Biomarker Families     74Acyclic Terpenoids or Isoprenoids     75Cyclic Terpenoids     75Labeling and Nomenclature of Biomarkers     77Stereoisomers     79Asymmetric (or Chiral) Carbons and [Alpha] and [Beta] Stereoisomers     80R and S Stereoisomers of Cyclic Biomarkers     81Analysis Methods for Biomarker Fingerprinting     81Capillary Gas Chromatography - Mass Spectrometry (GC-MS)     83Benchtop Quadrupole GC-MS     84Scan Mode      84Selected Ion Monitoring (SIM) Mode     84Example Benchtop GC-MS Conditions (EC Oil Spill Research Laboratory)     85Example Benchtop GC-MS Conditions (Petrobras Geochemistry Laboratory)     85Triple Quadrupole GC-MS-MS     85Mass Spectra and Identification of Biomarkers     86Fingerprinting Petroleum Biomarkers     90Biomarkers in Crude Oils     90Biomarkers in Petroleum Products     99Biomarkers in Lubricating Oils     101Biomarkers in Oil Fractions with Different Carbon Number Range     104Aromatic Steranes in Oils and Petroleum Products     104Sesquiterpanes in Oils and Petroleum Products     109Diamondoid Compounds in Oils and Lighter Petroleum Products     114Application of Biomarker Fingerprintings to Oil Spill Studies     117Source-Specific Biomarkers     1213.3.10 Using Diagnostic Ratios and Cross-Plots of Biomarkers for Source Identification of Oil Spills     125Diagnostic Ratios of Biomarkers     126Cross-Plots of Biomarkers     128Effects of Weathering on Biomarker Fingerprinting     130Processes Affecting the Fate and Behavior of Spilled Oil     130Weathering Effects on Biomarkers Fingerprinting     132Biodegradation of Biomarkers in Spilled Oil     133Determination of Weathered Percentages Using Biomarkers     134Case Study: Source Identification of a Harbor Spill by Forensic Fingerprinting of Biomarkers     134Product Type-Screening     134Characterization of Bicyclic Sesquiterpanes     135Confirmation of Source Identification by Quantitative Evaluation of Alkylated PAHs and Pentacyclic Terpanes and Steranes     135Conclusions     138References     140Characterization of Polycyclic Aromatic Sulfur Heterocycles for Source Identification     147Introduction     147Sulfur Compounds in Crude Oil and Petroleum Products     148Influence of Refinery Processes on PASH Patterns     150Stability of Polycyclic Aromatic Sulfur Heterocycles in the Environment     152Petroleum PASH Analysis Techniques     155Selective Detection in Gas Chromatography     156Flame Photometric Detection (FPD)     156Atomic Emission Detection (AED)     157Sulfur Chemiluminescence Detection (SCD)     157Mass-Selective Detection (MSD)     157Class Separation of PAH and PASH     157Comprehensive Two-Dimensional Gas Chromatography     158Quantification of PASH     158Petroleum PASH Markers in Environmental Forensic Investigations     159PASHs as Source Markers     160PASHs as Weathering Markers     162Conclusions     164References     164Oil Spill Identification by Comprehensive Two-Dimensional Gas Chromatography (GC x GC)     169Introduction     169The Need for High-Resolution Separations     169Multidimensional Methods     170Comprehensive Two-Dimensional Gas Chromatography (GC x GC)     171Modulation Techniques     172Detectors     172Data Processing     173GC x GC Chromatogram     174Peak Identity and Chromatogram Structure     175GC x GC Petroleum Applications     180Applications of GC x GC to Fingerprint Oil Spills     181Mobile Bay Marine Diesel Fuel Spill     181West Falmouth No. 2 Fuel Oil Spill     184Winsor Cove No. 2 Fuel Oil Spill     187Buzzards Bay No. 6 (Bunker C) Spill     191Oil Seeps, Santa Barbara, CA, USA     196Conclusion     201Acknowledgments      202References     202Application of Stable Isotope Ratios in Spilled Oil Identification     207Introduction     207Isotope Ratios and Their Measurement     207Bulk Isotope Ratios     210Compound-Specific Isotope Analysis (CSIA)     214Experimental Considerations     220Weathering     220Other Isotopes     224Conclusions     224References     225Emerging CEN Methodology for Oil Spill Identification     229Introduction     230Scope of the CEN Methodology     231Strategy for Identifying Oil Spills     231Tiered Levels of Analysis and Data Treatment     233Decision Chart for Identifying Oil Spills     233Visual Characterization and Preparation/Cleanup of Oil Samples     233Level 1 - GC/FID Screening     235Evaluation of Weathering     236Level 2 - GC/MS Fingerprinting     237Diagnostic Ratios from GC/MS Fingerprinting     237Diagnostic Ratios Derived from Alkylated Polycyclic Aromatic Compounds     238Diagnostic Ratios Derived from Petroleum Biomarkers     239Optional Diagnostic Ratios Derived from Sesquiterpanes     240Level 3 - Treatment of Results     245Comparison of Oil Samples Using Diagnostic Ratios     245Criteria for Selecting, Eliminating, and Evaluating Diagnostic Ratios     245Repeatability Limit and Critical Difference     246Elimination of Diagnostic Ratios Using Signal-to-Noise (S/N) Test     246Elimination of Diagnostic Ratios Using Duplicate Analyses     248Optional Comparison of Diagnostic Ratios Using Multivariate Statistics     249Final Evaluation and Conclusions     250The CEN Methodology in Practice: A Case Study     251The Spill Case     251GC/FID Screening     251GC/MS Fingerprinting     251Evaluation and Comparison of Diagnostic Ratios     251Summary     254Acknowledgment     255References     255Advantages of Quantitative Chemical Fingerprinting in Oil Spill Source Identification     257Introduction     257Qualitative Fingerprinting Methods     258Shortcomings of Qualitative Fingerprinting     260Weathered Oils     260Genetically Similar Oils     260Qualitatively Similar Oils      261Mixing     261Quantitative Fingerprinting Methods     263Semiquantitative versus Fully Quantitative Methods     263Data Generation for Fully Quantitative Fingerprinting     265Sample Collection     265Sample Preparation     266GC/FID Analysis     266GC/MS Analysis     268Data Quality     269Selection of Diagnostic Indices     269Source Identification Protocols for Quantitative Fingerprinting Data     272Unraveling Mixed Source Oils Using Quantitative Fingerprinting Data     276Two-Component Mixing Models     276Case Study 1     277Case Study 2     279Mixing Model Case Study 2     284Summary     289References     290A Multivariate Approach to Oil Hydrocarbon Fingerprinting and Spill Source Identification     293Introduction     293Multivariate Methods and Oil Fingerprinting     294Integrated Multivariate Oil Fingerprinting (IMOF)     296Sample Preparation and Chemical Analysis     297Sample Preparation     297Analytical Methods     298Fluorescence Spectroscopy      298GC-MS     299Quality Assurance and Quality Control (QA/QC)     301Data Preprocessing     302Partial GC-MS/SIM Chromatograms     303Baseline Removal     303Retention Time Alignment     304Normalization     306Diagnostic Ratios     306Preprocessing of Fluorescence Spectra     307Multivariate Statistical Data Analysis     308Multilinear Models     310Two-Way Case     310Higher-Order Arrays     311Variable Selection and Scaling     312Data Evaluation     314Visual Inspection of Score and Loading Plots     315Numerical Comparisons and Statistical Tests     317Conclusions and Perspectives     319Acknowledgments     321References     322Chemical Heterogeneity of Modern Marine Residual Fuel Oils     327Introduction     327Historical Perspective     328Production of Heavy Fuel Oils     328Marine Fuel Nomenclature and Classification     329Forensic Chemistry Considerations     330General Chemical Fingerprinting      330Samples and Analytical Methods     332General Features of Modern Residual Marine Fuel Oils     332Molecular Variability among Modern Residual Fuel Oils     336Petroleum Biomarkers     336Polycyclic Aromatic Hydrocarbons     338Distinguishing Heavy Fuel Oils from Crude Oil     343Conclusion     346References     346Biodegradation of Oil Hydrocarbons and Its Implications for Source Identification     349Introduction     349Biochemistry of Petroleum Biodegradation     349Aerobic Biodegradation of Hydrocarbons     351Anaerobic Biodegradation of Hydrocarbons     355Subsurface Biodegradation of Petroleum     357The Biodegradation of Hopanes and the Formation of 25-Norhopanes     360Factors Limiting Biodegradation     362Microbial Ecology of Petroleum Biodegradation     365The Succession of Microbial Communities     365Deep Subsurface Ecology     367Aerobic Respiration     367Anaerobic Respiration     368Conclusions; Implications of Biodegradation on Identification     369References     370Identification of Hydrocarbons in Biological Samples for Source Determination     381Introduction     381Determination of the Primary Route of Hydrocarbon Accumulation by Biota     382Catabolic Degradation of Hydrocarbons Accumulated by Biota     387Catabolic Degradation of PAH     387Effects of Catabolism on PAH Accumulation, Persistence, and Depuration     390Modes of Toxic Action of Accumulated Hydrocarbons     393Case Study: The Exxon Valdez Oil Spill     396Summary     398References     398Trajectory Modeling of Marine Oil Spills     405Introduction     405Forecasting and Hindcasting Oil Spill Movement     406Oil Spill Transport     407Wind     409Currents     411Turbulent Diffusion     413Evolution of an Oil Spill     413Spreading     413Oil Weathering     414Conclusions and Challenges     416Acknowledgments     416References     416Oil Spill Remote Sensing: A Forensic Approach     419Introduction     419Visible Indications of Oil     420Optical Sensors     420Visible      420Infrared     422Ultraviolet     423Night Vision Cameras     423Laser Fluorosensors     423Microwave Sensors     426Radiometers     426Radar     426Microwave Scatterometers     428Determination of Slick Thickness     428Visual Thickness Indications     428Theoretical Approaches     429Literature Review of Visual Indications of Oil Slick Thickness     429Oil Slick-Thickness Relationships in Remote Sensors     431Specific Oil-Thickness Sensors     432Acoustic Systems     435Satellite Remote Sensing     435Detection of Oil under Ice     436Real-Time Displays and Printers     438Future Trends     438References     439Advances in Forensic Techniques for Petroleum Hydrocarbons: The Exxon Valdez Experience     449Introduction     449Identification of Hydrocarbon Sources in PWS     450Multiple Sources of Hydrocarbons     450Petrogenic Hydrocarbons     451Biogenic Hydrocarbons     453Pyrogenic Hydrocarbons      453Composition of Exxon Valdez Crude and Its Weathering Products     453Bulk Composition and Trace Chemistry     453Weathering Trends     457Data Sources     457Major Fraction Trends     457PAH Trends     457Mass Loss during Weathering     458Resolution of Inputs to the Natural Background     458Hydrocarbon Source Allocations     462Source Allocation Models     462Qualitative Allocation Models     464Quantitative Models     464PAH Ratios     464Statistical Models     465Statistical Models     466Multivariate Methods - Constrained Least Squares     466Multivariate Analysis - Partial Least Squares     468Total Organic Carbon (TOC) Constraints on Source Allocations     468Allocation of Anthropogenic Sources of PAH     469Identification of Hydrocarbons in Biological Samples     470Applications of Forensic Methods to Assessments of Oil Bioavailability     477PAH Uptake in Biota     477Passive Sampling of PAH in Water     481Biological Markers     481Summary     482Acknowledgments      483References     483Case Study: Oil Spills in the Strait of Malacca, Malaysia     489Strait of Malacca, Malaysia: Introduction     489Hydro-Oceanographic Condition of the Strait     489Ship Traffic in the Strait of Malacca: Historical and Present     491Chronic and Acute Oil Spill Events in the Strait     491Contribution of Oil Pollution Sources in Malaysia     491Methodology     492Sample Collection     492Source Petroleum     492Tar-Ball Samples     492Sediment Samples     492Street Dust Samples     493Asphalt Samples     494Fresh Crankcase Oil     494Used Crankcase Oil     495Automobile Tire Rubber     495Aerosol Samples     495Analytical Procedure     495Chemicals     495Extraction and Fractionation     496Instrumental Analysis     496Analysis of Alkanes and Hopanes     496N-Cyclohexyl-2-Benzothiozolamine (NCBA)     497Analysis of PAHs     497Establishment and Application of Biomarker Analysis for Source Identification of Oil Pollution Sources in the Strait of Malacca     498Case Study 1: Development of the Analytical Method for Oil Pollution Source Identification Using Biomarkers in the Strait of Malacca     498Weathering of Tar Balls     499The Application of Molecular Markers for Source Identification of Tar-Ball Pollution in Malaysia     501Case Study 2: Distribution and Sources of Polycyclic Aromatic Hydrocarbons (PAHs) in Rivers and Estuaries in Malaysia     502Conclusions and Future Scenario     502References     503Evaluation of Hydrocarbon Sources in Guanabara Bay, Brazil     505Guanabara Bay and Hydrocarbon Apportioning     505Regional Setting     506January 2000 Heavy Fuel Oil Spill     506Methodology for Hydrocarbon Determination and Source Evaluation     507Sampling Design     507Chemical Analysis     508Sediment Sample Extraction     508Extract Cleanup     509PAH Analysis of Sediment Samples     509Biomarkers     510Source Identification Techniques     510PAH Diagnostic Ratios     510PAH Multivariate Statistical Analysis     511Biomarker Diagnostic Ratios     511Hydrocarbon Results for Guanabara Bay Sediments     511PAH Quantification and Distribution     511Hydrocarbon Source Identification     514PAH Diagnostic Ratios     514PAH Principal Component Analysis     525Biomarker Diagnostic Ratios     527Conclusions     531Acknowledgments     533References     534Index     537

\ From the PublisherExplored are the analytical and interpretative techniques best suited for a particular oil spill project. The book also examines the use of these techniques in actual environmental oil spills and chronicles the successes and failures of the techniques used for each of these events.-Petroleum Review, February 2007\ \