Biomolecular Computation by Nanobiotechnology

Hardcover
from $0.00

Author: Jian-Qin Liu

ISBN-10: 1596930144

ISBN-13: 9781596930148

Category: Electronics - Microelectronics

Computers built with moleware? The drive toward non-silicon computing is underway, and this first-of-its-kind guide to molecular computation gives researchers a firm grasp of the technologies, biochemical details, and theoretical models at the cutting edge. It explores advances in molecular biology and nanotechnology and illuminates how the convergence of various technologies is propelling computational capacity beyond the limitations of traditional hardware technology and into the realm of...

Search in google:

Preface     xiIntroduction: How to Go Beyond Traditional Computers     1Scientific Motivation Versus the Needs of the IT Industry     3Cutting-Edge Technologies for Building a Molecular Computer: From Nanobioscience and Nanotechnology to Nanobioinformatics     5Synthetic Biology     6Emerging Technologies for Protein Analysis: To Gain Information about Proteins, Protein Interaction, and Their Links to the Medicine     8Preliminaries in Nanobioscience     9Gedanken Model     10Some Concepts in Biochemistry     11Systems Biology     12Perspectives on Innovative Technologies for Biomolecular Computing: Benefits from Breakthroughs of Molecular Biology in the New Millennium     12Challenges from Real-World Applications     13Performances of Biomolecular Computing     13Technological Difficulties on Feasibility of Implementation of a Biomolecular Computer: Scalability, Reliability, and Controllability     13Back to Molecular Informatics: How to Use Molecules to Represent Information     15References     19The State-of-the-Art Molecular Biology and Nanotechnology     23Genomics     23Proteomics     26Cellular Structure from the Viewpoint of MolecularBiology     29Cell as a Nanobiomachine     31Moleware Mechanics for Cellular Nanobiomachine: Molecules Carrying Messages     33Molecular Informatics for Cellular Nanobiomachine     34Signal Transduction and Signaling Pathways of Cells     35The Link Between the Signaling Pathway and Molecular Movement     37The Links Between Signal Pathways and Neuron Function     37Measurement and Detection in Material Science: Towards Manipulation of Biological Molecules     38Pharmaceutical Nanobioinformatics     41"Naive" Thinking for Pharmaceutics     41Molecular Information Flow as a Possible Solution Towards Potential Application of Nanobioinformation Processing Systems     42References     45Nanobiomachines for Information Processing and Communication: Exploring Fundamental Principles of NanobioICT     49Mission of NanobioICT     50Information Theory of NanobioICT: Shannon Meets Feynman     53Embryonic Approaches to NanobioICT     56A Glance at Informatics of Moleware Communication     67An Informatics Form of a Molecular Viterbi Algorithm     76Network Coding in Molecular Informatics     80Quadruple Convergence     84References      87Computing by Biomoleware: Diverse Methods from Diversified Materials     91How to Build an Engineered Computational Nanobiosystem: Inspiration from Existing Nanobiomachines in Nature     92Nanobioworld Becomes Observable with the Help of Innovative Measurement Technology: Schrodinger's Cat Is at the Door     92Seeking a Movable Nanobiomachine: Postman in Moleware     94Methodology Learned from the Cell and Beyond     96Information Processing in Artificial Nanobiosystems: An Odyssey Beyond the Blind Watchmaker     97Molecular Complex as Memory-Memorizing Instead of Braining     100Molecular Clock-The Heart of Synchronous Moleware     105Moleware Coding in Nanobiomachine-A Solution from the Cell     108Computing by Nucleic Acids     114DNA Computing     115RNA Computing     121Surface-Based DNA Computing     123Nanobiotechnology for DNA Computing     125Computing by Biochemical Reactions in Microbes     127Information Processing Mechanism of Microbes     127Computing by Gene Operations in Ciliates     129Moleware Microarray     132References     136Theoretical Biomolecular Computing     141Basic Concepts in Computer Science for Molecular Computing     142Formal Language     143Automata     145Formalized Molecular Computing     146H-System     147P-System     150Rediscovering the Informatics Structure of the Biomolecular Computing System: An Informatics View of the Formal Processes of the Biomolecular Computing H-System     153How to Design Algorithms for a Molecular Computer     157Observing Complexity from Benchmarks     157Obtaining Efficiency from Pathway Designs: Algorithmic Design Through Examples     160Touchstone for Nanobio-Oracle: Moleware Logic     171Consistency of Computing Operators and Feasible Experimental Supports: Verification of Logic Process     171Formalized Method for Moleware Logic     173References     179Cellular Biomolecular Computing Based on Signaling Pathways: Kinase Computing     181Cellular Pathway: Another Ubiquitous Society in Another Universe     182Ubiquitous Cell Communication for Parallel Information Processing     182The Molecular Switch as a Bridge Between Cell Communication and Molecular Computing     184Binary Information Representation by Molecular Switch     185Computing Formalized as an Automaton      188Example: Designing an Automaton for Kinase Switches Guided by GTPase     190Information Structure for Automaton-Based Computing     191A Computing Model Based on Pathway Units with Turing Computability     193From Automaton to Rewriting: Toward General Parallel Computing     199Formalization     199Transition from Hypergraphs to Bigraphs     203McNaughton Language, Confluent Rewriting, and Controlling with the Structural Characteristics of MSP-Automaton     205Designing a Rewriting Process by Pathway Units Based on MSP-Automata     209A Compiler: Translating Moleware Language into Programmer-Friendly Informatics Operators     210Systematically Understanding the Interaction Structure in Pathway Computing     212Generalized Form for Computing     212Blueprint of a Kinase Computer     214Quantitative Description for Biochemical Features     214Materials for Information Processing     217Controllability Under Protocols in Bioinformation     218References     221Comparison of Algorithms for Biomolecular Computing and Molecular Bioinformatics     223Formal Characteristics of Algorithms for Biomolecular Computing     224DNA Computing      225Surface-Based DNA Computing     225H-Systems     225P-Systems     226DNA Computing Method by Ciliates     226Interactions in Molecular Bioinformatics Algorithms     227Example 1: Interaction of GTPases     229Example 2: Interaction of Kinases/Phosphatases     232Common Points of Biomolecular Computing and Molecular Bioinformatics for Algorithms     239Example: Describing Cellular Pathways by Graph Rewriting     242Exploring Logical Description for Molecular Bioinformatics Based on Formalization and Abstract Operations     245References     250Emerging Nanobiotechnology in Multiple Disciplines     253The Tale of Two Media: Molecular Electricity and Biomolecular Signaling     253How Small Can an Information Processing System Be Made?     254Informatics of Porphyrin Systems     255Transition from the Supporting Points to Integrations of Different Aspects of Molecular Information Processing     260Cell Communication for Engineering Purpose     263From Bit Level of Information Representation to Observe Cellular Communication     265The Biophysical Effectors of the Molecular Information Flow     266Effects of Molecular Protocols by the Internal Components of Cells     266Control Nodes in Moleware Communication Networks     267Collision-Avoid: An Issue on Efficiency of Moleware Communication in Cells     268References     272About the Authors     275Index     277