Ceramic Materials: Science and Engineering

Paperback
from $0.00

Author: C. Barry Carter

ISBN-10: 0387462708

ISBN-13: 9780387462707

Category: Glass & Ceramics - Materials Science

Search in google:

Ceramic Materials: Science and Engineering is an up-to-date treatment of ceramic science, engineering, and applications in a single, integrated text. Building on a foundation of crystal structures, phase equilibria, defects and the mechanical properties of ceramic materials, students are shown how these materials are processed for a broad diversity of applications in today's society. Concepts such as how and why ions move, how ceramics interact with light and magnetic fields, and how they respond to temperature changes are discussed in the context of their applications. References to the art and history of ceramics are included throughout the text. The text concludes with discussions of ceramics in biology and medicine, ceramics as gemstones and the role of ceramics in the interplay between industry and the environment. Extensively illustrated, the text also includes questions for the student and recommendations for additional reading.KEY FEATURES:Combines the treatment of bioceramics, furnaces, glass, optics, pores, gemstones, and point defects in a single text Provides abundant examples and illustrations relating theory to practical applicationsSuitable for advanced undergraduate and graduate teaching and as a reference for researchers in materials scienceWritten by established and successful teachers and authors with experience in both research and industry

Preface     viiHistory and IntroductionIntroduction     3Definitions     3General Properties     4Types of Ceramic and their Applications     5Market     6Critical Issues for the Future     7Relationship between Microstructure, Processing and Properties     8Safety     9Ceramics on the Internet     10On Units     10Some History     15Earliest Ceramics: The Stone Age     15Ceramics in Ancient Civilizations     17Clay     19Types of Pottery     19Glazes     20Development of a Ceramics Industry     21Plaster and Cement     22Brief History of Glass     24Brief History of Refractories     25Major Landmarks of the Twentieth Century     26Museums     28Societies     29Ceramic Education     29MaterialsBackground You Need to Know     35The Atom     35Energy Levels     36Electron Waves     37Quantum Numbers     37Assigning QuantumNumbers     39Ions     42Electronegativity     44Thermodynamics: The Driving Force for Change     45Kinetics: The Speed of Change     47Bonds and Energy Bands     51Types of Interatomic Bond     51Young's Modulus     51Ionic Bonding     53Covalent Bonding     58Metallic Bonding in Ceramics     63Mixed Bonding     64Secondary Bonding     64Electron Energy Bands in Ceramics     66Models, Crystals, and Chemistry     71Terms and Definitions     71Symmetry and Crystallography     74Lattice Points, Directions, and Planes     75The Importance of Crystallography     76Pauling's Rules     76Close-Packed Arrangements: Interstitial Sites     79Notation for Crystal Structures     81Structure, Composition, and Temperature     81Crystals, Glass, Solids, and Liquid     82Defects     83Computer Modeling     83Binary Compounds     87Background     87CsCl     88NaCl (MgO, TiC, PbS)      88GaAs ([Beta]-SiC)     89AlN (BeO, ZnO)     90CaF[subscript 2]     91FeS[subscript 2]     92Cu[subscript 2]0     93CuO     93TiO[subscript 2]     93Al[subscript 2]O[subscript 3]     94MoS[subscript 2] and CdI[subscript 2]     95Polymorphs, Polytypes, and Polytypoids     96Complex Crystal and Glass Structures     100Introduction     100Spinel     101Perovskite     102The Silicates and Structures Based on SiO[subscript 4]     104Silica     105Olivine     106Garnets     107Ring Silicates     107Micas and Other Layer Materials     108Clay Minerals     109Pyroxene     109[Beta]-Aluminas and Related Materials     110Calcium Aluminate and Related Materials     111Mullite     111Monazite     111YBa[subscript 2]Cu[subscript 3]O[subscript 7] and Related High-Temperature Superconductors (HTSCs)     112Si[subscript 3]N[subscript 4], SiAlONs, and Related Materials     113Fullerenes and Nanotubes     113Zeolites and Microporous Compounds     114Zachariasen's Rules for the Structure of Glass     115Revisiting Glass Structures     117Equilibrium Phase Diagrams     120What's Special about Ceramics?     120Determining Phase Diagrams     121Phase Diagrams for Ceramists: The Books     124Gibbs Phase Rule     124One Component (C = 1)     125Two Components (C = 2)     126Three and More Components     128Composition with Variable Oxygen Partial Pressure     130Quaternary Diagrams and Temperature     132Congruent and Incongruent Melting     132Miscibility Gaps in Glass     133ToolsFurnaces     139The Need for High Temperatures     139Types of Furnace     139Combustion Furnaces     140Electrically Heated Furnaces     141Batch or Continuous Operation     141Indirect Heating     143Heating Elements     144Refractories     146Furniture, Tubes, and Crucibles     147Firing Process     148Heat Transfer      148Measuring Temperature     149Safety     151Characterizing Structure, Defects, and Chemistry     154Characterizing Ceramics     154Imaging Using Visible-Light, IR, and UV     155Imaging Using X-rays and CT Scans     157Imaging in the SEM     158Imaging in the TEM     159Scanning-Probe Microscopy     161Scattering and Diffraction Techniques     162Photon Scattering     163Raman and IR Spectroscopy     163NMR Spectroscopy and Spectrometry     165Mossbauer Spectroscopy and Spectrometry     166Diffraction in the EM     168Ion Scattering (RBS)     168X-ray Diffraction and Databases     169Neutron Scattering     171Mass Spectrometry     172Spectrometry in the EM     172Electron Spectroscopy     174Neutron Activation Analysis (NAA)     175Thermal Analysis     175DefectsPoint Defects, Charge, and Diffusion     181Are Defects in Ceramics Different?     181Types of Point Defects     182What Is Special for Ceramics?      183What Type of Defects Form?     184Equilibrium Defect Concentrations     184Writing Equations for Point Defects     186Solid Solutions     187Association of Point Defects     189Color Centers     190Creation of Point Defects in Ceramics     191Experimental Studies of Point Defects     192Diffusion     192Diffusion in Impure, or Doped, Ceramics     193Movement of Defects     197Diffusion and Ionic Conductivity     197Computing     199Are Dislocations Unimportant?     201A Quick Review of Dislocations     202Summary of Dislocation Properties     206Observation of Dislocations     206Dislocations in Ceramics     208Structure of the Core     208Detailed Geometry     211Defects on Dislocations     214Dislocations and Diffusion     215Movement of Dislocations     216Multiplication of Dislocations     216Dislocation Interactions     217At the Surface     219Indentation, Scratching, and Cracks     219Dislocations with Different Cores     220Surfaces, Nanoparticles, and Foams     224Background to Surfaces     224Ceramic Surfaces     225Surface Energy     225Surface Structure     227Curved Surfaces and Pressure     230Capillarity     230Wetting and Dewetting     231Foams     232Epitaxy and Film Growth     233Film Growth in 2D: Nucleation     233Film Growth in 2D: Mechanisms     234Characterizing Surfaces     235Steps     239In Situ     240Surfaces and Nanoparticles     241Computer Modeling     241Introduction to Properties     242Interfaces in Polycrystals     246What Are Grain Boundaries?     246For Ceramics     248GB Energy     249Low-Angle GBs     251High-Angle GBs     254Twin Boundaries     255General Boundaries     258GB Films     259Triple Junctions and GB Grooves     262Characterizing GBs     263GBs in Thin Films     264Space Charge and Charged Boundaries     265Modeling     265Some Properties     265Phase Boundaries, Particles, and Pores     269The Importance     269Different Types     269Compared to Other Materials     270Energy     270The Structure of PBs     271Particles     272Use of Particles     276Nucleation and Growth of Particles     276Pores     277Measuring Porosity     278Porous Ceramics     279Glass/Crystal Phase Boundaries     280Eutectics     281Metal/Ceramic PBs     282Forming PBs by Joining     283Mechanical Strength and WeaknessMechanical Testing     289Philosophy     289Types of Testing     291Elastic Constants and Other "Constants"     292Effect of Microstructure on Elastic Moduli     294Test Temperature     295Test Environment     296Testing in Compression and Tension     296Three- and Four-Point Bending     297K[subscript Ic] from Bend Test     298Indentation      299Fracture Toughness from Indentation     300Nanoindentation     301Ultrasonic Testing     301Design and Statistics     302SPT Diagrams     305Deforming: Plasticity     309Plastic Deformation     309Dislocation Glide     310Slip in Alumina     312Plastic Deformation in Single Crystals     313Plastic Deformation in Polycrystals     314Dislocation Velocity and Pinning     315Creep     317Dislocation Creep     317Diffusion-Controlled Creep     318Grain-Boundary Sliding     318Tertiary Creep and Cavitation     319Creep Deformation Maps     321Viscous Flow     321Superplasticity     322Fracturing: Brittleness     325The Importance of Brittleness     325Theoretical Strength: The Orowan Equation     326The Effect of Flaws: The Griffith Equation     327The Crack Tip: The Inglis Equation     329Stress Intensity Factor     329R Curves     330Fatigue and Stress Corrosion Cracking     331Failure and Fractography     332Toughening and Ceramic Matrix Composites     335Machinable Glass-Ceramics     338Wear     338Grinding and Polishing     339ProcessingRaw Materials     345Geology, Minerals, and Ores     345Mineral Formation     345Beneficiation     347Weights and Measures     347Silica     348Silicates     348Oxides     351Nonoxides     354Powders, Fibers, Platelets, and Composites     359Making Powders     359Types of Powders     360Mechanical Milling     360Spray Drying     362Powders by Sol-Gel Processing     363Powders by Precipitation     363Chemical Routes to Nonoxide Powders     364Platelets     365Nanopowders by Vapor-Phase Reactions     365Characterizing Powders     366Characterizing Powders by Microscopy     366Sieving     366Sedimentation     367The Coulter Counter     368Characterizing Powders by Light Scattering      368Characterizing Powders by X-ray Diffraction     369Measuring Surface Area (the BET Method)     369Determining Particle Composition and Purity     370Making Fibers and Whiskers     370Oxide Fibers     371Whiskers     372Glass Fibers     372Coating Fibers     373Making Ceramic-Matrix Composites     374Ceramic-Matrix Composites from Powders and Slurries     374Ceramic-Matrix Composites by Infiltration     375In Situ Processes     375Glass and Glass-Ceramics     379Definitions     379History     380Viscosity, [eta]     383Glass: A Summary of Its Properties, or Not     385Defects in Glass     386Heterogeneous Glass     386Yttrium-Aluminum Glass     386Coloring Glass     386Glass Laser     388Precipitates in Glass     388Crystallizing Glass     388Glass as Glaze and Enamel     390Corrosion of Glass and Glaze     392Types of Ceramic Glasses     393Natural Glass     394The Physics of Glass      396Sols, Gels, and Organic Chemistry     400Sol-Gel Processing     400Structure and Synthesis of Alkoxides     401Properties of Alkoxides     402The Sol-Gel Process Using Metal Alkoxides     403Characterization of the Sol-Gel Process     406Powders, Coatings, Fibers, Crystalline, or Glass     407Shaping and Forming     412The Words     412Binders and Plasticizers     413Slip and Slurry     413Dry Pressing     414Hot Pressing     414Cold Isostatic Pressing     415Hot Isostatic Pressing     416Slip Casting     417Extrusion     418Injection Molding     419Rapid Prototyping     420Green Machining     420Binder Burnout     421Final Machining     421Making Porous Ceramics     422Shaping Pottery     422Shaping Glass     423Sintering and Grain Growth     427The Sintering Process     427The Terminology of Sintering     429Capillary Forces and Surface Forces      429Sintering Spheres and Wires     429Grain Growth     431Sintering and Diffusion     431Liquid-Phase Sintering     433Hot Pressing     433Pinning Grain Boundaries     434More Grain Growth     435Grain Boundaries, Surfaces, and Sintering     436Exaggerated Grain Growth     437Fabricating Complex Shapes     438Pottery     439Pores and Porous Ceramics     439Sintering with Two and Three Phases     440Examples of Sintering in Action     441Computer Modeling     441Solid-State Phase Transformations and Reactions     444Transformations and Reactions: The Link     444The Terminology     445Technology     445Phase Transformations without Changing Chemistry     447Phase Transformations Changing Chemistry     448Methods for Studying Kinetics     449Diffusion through a Layer: Slip Casting     450Diffusion through a Layer: Solid-State Reactions     451The Spinel-Forming Reaction     451Inert Markers and Reaction Barriers     452Simplified Darken Equation      453The Incubation Period     454Particle Growth and the Effect of Misfit     454Thin-Film Reactions     455Reactions in an Electric Field     457Phase Transformations Involving Glass     458Pottery     459Cement     459Reactions Involving a Gas Phase     460Curved Interfaces     461Processing Glass and Glass-Ceramics     463The Market for Glass and Glass Products     463Processing Bulk Glasses     463Bubbles     467Flat Glass     468Float-Glass     469Glassblowing     470Coating Glass     472Safety Glass     473Foam Glass     473Sealing Glass     473Enamel     474Photochromic Glass     474Ceramming: Changing Glass to Glass-Ceramics     474Glass for Art and Sculpture     476Glass for Science and Engineering     478Coatings and Thick Films     481Defining Thick Film     481Tape Casting     481Dip Coating     484Spin Coating      484Spraying     485Electrophoretic Deposition     486Thick-Film Circuits     488Thin Films and Vapor Deposition     494The Difference between Thin Films and Thick Films     494Acronyms, Adjectives, and Hyphens     494Requirements for Thin Ceramic Films     495Chemical Vapor Deposition     495Thermodynamics of Chemical Vapor Deposition     497Chemical Vapor Deposition of Ceramic Films for Semiconductor Devices     498Types of Chemical Vapor Deposition     499Chemical Vapor Deposition Safety     500Evaporation     500Sputtering     501Molecular-Beam Epitaxy     502Pulsed-Laser Deposition     503Ion-Beam-Assisted Deposition     504Substrates     504Growing Single Crystals     507Why Single Crystals?     507A Brief History of Growing Ceramic Single Crystals     507Methods for Growing Single Crystals of Ceramics     508Melt Technique: Verneuil (Flame-Fusion)     509Melt Technique: Arc-Image Growth     511Melt Technique: Czochralski     511Melt Technique: Skull Melting      514Melt Technique: Bridgman-Stockbarger     515Melt Technique: Heat-Exchange Method     516Applying Phase Diagrams to Single-Crystal Growth     516Solution Technique: Hydrothermal     517Solution Technique: Hydrothermal Growth at Low Temperature     519Solution Technique: Flux Growth     519Solution Technique: Growing Diamonds     521Vapor Technique: Vapor-Liquid-Solid     521Vapor Technique: Sublimation     522Preparing Substrates for Thin-Film Applications     522Growing Nanowires and Nanotubes by Vapor-Liquid-Solid and Not     522Properties and ApplicationsConducting Charge or Not     529Ceramics as Electrical Conductors     529Conduction Mechanisms in Ceramics     531Number of Conduction Electrons     532Electron Mobility     533Effect of Temperature     533Ceramics with Metal-Like Conductivity     534Applications for High-[sigma] Ceramics     535Semiconducting Ceramics     537Examples of Extrinsic Semiconductors     539Varistors     540Thermistors     541Wide-Band-Gap Semiconductors      542Ion Conduction     543Fast Ion Conductors     543Batteries     544Fuel Cells     544Ceramic Insulators     546Substrates and Packages for Integrated Circuits     548Insulating Layers in Integrated Circuits     549Superconductivity     550Ceramic Superconductors     551Locally Redistributing Charge     556Background on Dielectrics     556Ferroelectricity     560BaTiO[subscript 3]: The Prototypical Ferroelectric     562Solid Solutions with BaTiO[subscript 3]     565Other Ferroelectric Ceramics     565Relaxor Dielectrics     565Ceramic Capacitors     565Ceramic Ferroelectrics for Memory Applications     568Piezoelectricity     569Lead Zirconate-Lead Titanate (PZT) Solid Solutions     570Applications for Piezoelectric Ceramics     571Piezoelectric Materials for Microelectromechanical Systems     572Pyroelectricity     572Applications for Pyroelectric Ceramics     573Interacting with and Generating Light     575Some Background for Optical Ceramics      575Transparency     577The Refractive Index     578Reflection from Ceramic Surfaces     579Color in Ceramics     580Coloring Glass and Glazes     581Ceramic Pigments and Stains     581Translucent Ceramics     583Lamp Envelopes     584Fluorescence     585The Basics of Optical Fibers     586Phosphors and Emitters     588Solid-State Lasers     589Electrooptic Ceramics for Optical Devices     590Reacting to Other Parts of the Spectrum     594Optical Ceramics in Nature     595Using Magnetic Fields and Storing Data     598A Brief History of Magnetic Ceramics     598Magnetic Dipoles     599The Basic Equations, the Words, and the Units     600The Five Classes of Magnetic Material     601Diamagnetic Ceramics     601Superconducting Magnets     602Paramagnetic Ceramics     603Measuring X     604Ferromagnetism     604Antiferromagnetism and Colossal Magnetoresistance     605Ferrimagnetism     606Estimating the Magnetization of Ferrimagnets     609Magnetic Domains and Bloch Walls     609Imaging Magnetic Domains     610Motion of Domain Walls and Hysteresis Loops     611Hard and Soft Ferrites     612Microwave Ferrites     614Data Storage and Recording     614Magnetic Nanoparticles     616Responding to Temperature Changes     619Summary of Terms and Units     619Absorption and Heat Capacity     619Melting Temperatures     621Vaporization     623Thermal Conductivity     624Measuring Thermal Conductivity     626Microstructure and Thermal Conductivity     626Using High Thermal Conductivity     628Thermal Expansion     628Effect of Crystal Structure on [alpha]     630Thermal Expansion Measurment     631Importance of Matching [alpha]s     632Applications for Low-[alpha]     632Thermal Shock     633Ceramics in Biology and Medicine     635What Are Bioceramics?     635Advantages and Disadvantages of Ceramics     636Ceramic Implants and the Structure of Bone      638Alumina and Zirconia     639Bioactive Glasses     640Bioactive Glass-Ceramics     641Hydroxyapatite     642Bioceramics in Composites     644Bioceramic Coatings     645Radiotherapy Glasses     646Pyrolytic Carbon Heart Valves     646Nanobioceramics     647Dental Ceramics     648Biomimetics     648Minerals and Gems     652Minerals     652What Is a Gem?     653In the Rough     653Cutting and Polishing     654Light and Optics in Gemology     656Color in Gems and Minerals     660Optical Effects     661Identifying Minerals and Gems     663Chemical Stability (Durability)     664Diamonds, Sapphires, Rubies, and Emeralds     664Opal     666Other Gems     667Minerals with Inclusions     669Treatment of Gems     670The Mineral and Gem Trade     670Industry and the Environment     675The Beginning of the Modern Ceramics Industry     675Growth and Globalization      676Types of Market     677Case Studies     677Emerging Areas     680Mining     682Recycling     683In the Nuclear Industry     685Producing and Storing Hydrogen     685As Green Materials     687Index     691Details for Figures and Tables     701