Multidimensional Liquid Chromatography: Theory and Applications in Industrial Chemistry and the Life Sciences

Hardcover
from $0.00

Author: Steven A. Cohen

ISBN-10: 0471738476

ISBN-13: 9780471738473

Category: General & Miscellaneous Chemical Engineering

Multidimensional Liquid Chromatography (MDLC) is a very powerful separation technique for analyzing exceptionally complex samples in one step. This authoritative reference presents a number of recent contributions that help define the current art and science of MDLC. Topics covered include instrumentation, theory, methods development, and applications of MDLC in the life sciences and in industrial chemistry. With the information to help you perform very difficult separations of complex...

Search in google:

MDLC: A Real-Life, Real-Lab ResourceMultidimensional Liquid Chromatography (MDLC) is a very powerfulseparation technique for analyzing exceptionally complex samples in onestep. This authoritative reference presents a number of recent contributions that help define the current art and science of MDLC. Topics covered include instrumentation, theory, methods development, and applications of MDLC in the life sciences and in industrial chemistry. With the information to help readers perform very difficult separations of complex samples, this reference: Includes introductory chapters on theory and instrumentationFocuses on techniques that incorporate separations carried out in the liquid phase and by columns, and on those in which the use of the comprehensive mode prevails but is not exclusiveCovers applications to research in polymer and industrial analysis, pharmaceuticals, and proteomics and other life sciencesFeatures chapters contributed by leading experts or teams of expertsWith a practical combination of theory and applications, Multidimensional Liquid Chromatography: Theory and Applications in Industrial Chemistry and the Life Sciences shows readers how to use MDLC to solve real-life,real-lab problems. A core reference for pharmaceutical and life scienceresearchers and for analytical chemists in various industries, it also providesan overview for practitioners who are new in their fields. In addition, it is an excellent resource for graduate students and postdoctoral fellows in academic laboratories.

Foreword     xiiiPreface     xvContributors     xviiIntroduction     1Previous Literature Which Covers MDLC     4How this Book is Organized     5References     6Theory     9Elements of the Theory of Multidimensional Liquid Chromatography     11Introduction     11Peak Capacity     13Resolution     17Orthogonality     19Two-Dimensional Theory of Peak Overlap     21Dimensionality, Peak Ordering, and Clustering     23Theory of Zone Sampling     24Dilution and Limit of Detection     26Chemometric Analysis     27Future Directions     28References     30Peak Capacity in Two-Dimensional Liquid Chromatography     35Introduction     35Theory     37Procedures     41Results and Discussion     42Conclusions     49Generation of Random Correlated Coordinates     50Derivation of Limiting Correlation Coefficient r     54References     56Decoding Complex 2D Separations     59Introduction     59Fundamentals: The Statistical Description of Complex Multicomponent Separations     62Decoding 1D and 2D Multicomponent Separations by Using the SMO Poisson Statistics     68Decoding Multicomponent Separations by the Autocovariance Function     74Application to 2D Separations     78Results from SMO Method     81Results from 2D Autocovariance Function Method     84Concluding Remarks     88Acknowledgments     88References     88Columns, Instrumentation and Methods Development     91Instrumentation for Comprehensive Multidimensional Liquid Chromatography     93Introduction     93Heart-Cutting Versus Comprehensive Mode     95Chromatographic Hardware     97Valves     97CE Interfaces     104Gated Interface for HPLC-CE     104Microfluidic Valves for On-Chip Multidimensional Analysis     105Columns and Combinations     106Column Systems, Dilution, and Splitting     108Detection     109Computer Hardware and Software     109Software Development     110Valve Sequencing      111Data Format and Storage     113Zone Visualization     115Contour Visualization     1152D Peak Presentation     117Zone Visualization in Specific Chemical (pI) Regions     117External Plotting Programs     117Difference Plots     118Multi-channel Data     118Data Analysis and Signal Processing     119Future Prospects     120References     121Method Development in Comprehensive Multidimensional Liquid Chromatography     127Introduction     127Previous Work     128Column Variables     130Method Development     130The Cardinal Rules of 2DLC Method Development     132Planning the Experiment     143General Comments on Optimizing the 2DLC Experiment: Speed-Resolution Trade-off     143Acknowledgment     144References     144Monolithic Columns and Their 2D-HPLC Applications     147Introduction     147Monolithic Polymer Columns     148Structural Properties of Polymer Monoliths     148Chromatographic Properties of Polymer Monolithic Columns      150Two-Dimensional HPLC Using Polymer Monoliths     152Monolithic Silica Columns     153Preparation     154Structural Properties of Monolithic Silica Columns     154Chromatographic Properties of Monolithic Silica Columns     156Peak Capacity Increase by Using Monolithic Silica Columns in Gradient Elution     1582D HPLC Using Monolithic Silica Columns     159RP-RP 2D HPLC Using Two Different Columns     161RP-RP 2D HPLC Using Two Similar Columns     164Ion Exchange-Reversed-Phase 2D HPLC Using a Monolithic Column for the 2nd-D     166IEX-RP 2D HPLC Using a Monolithic RP Capillary Column for the 2nd-D     168Summary and Future Improvement of 2D HPLC     171References     171Ultrahigh Pressure Multidimensional Liquid Chromatography     177Background: MDLC in the Jorgenson Lab     177Cation Exchange-Size Exclusion     178Anion Exchange-Reversed Phase     180Cation Exchange-Reversed Phase     181Size Exclusion-Reversed Phase     183Online Versus Off-Line MDLC     188MDLC Using Ultrahigh Pressure Liquid Chromatography: Benefits and Challenges     189An Introduction to UHPLC      190UHPLC for LC x LC: High Speed Versus High Peak Capacity     191LC x UHPLC for Separations of Intact Proteins     191Experimental Details     193Instrumentation     193Data Analysis     194Chromatographic Conditions     195Samples     196Results and Discussion     196Future Directions for UHP-MDLC     202References     203Life Science Applications     205Peptidomics     207State of the Art-Why Peptidomics?     207Strategies and Solutions     208Summary and Conclusions     218References     218A Two-Dimensional Liquid Mass Mapping Technique for Biomarker Discovery     221Introduction     221Methods for Separating and Identifying Proteins     223pI-Based Methods of Separation     223Chromatofocusing-A Column Based pH Separation     225Nonporous Separation of Proteins     226Electrospray-Time of Flight-Mass Spectrometry     228MALDI Peptide Mass Fingerprinting     229Data Analysis and Recombination     230Applications     230Proteomic Mapping and Clustering of Multiple Samples-Application to Ovarian Cancer Cell Lines     2302D Liquid Mass Mapping of Tumor Cell Line Secreted Samples, Application to Metastasis-Associated Protein Profiles     233Identification Annotation and Data Correlation in MCF10 Human Breast Cancer Cell Lines     235Summary and Conclusions     237Acknowledgments     238References     238Coupled Multidimensional Chromatography and Tandem Mass Spectrometry Systems for Complex Peptide Mixture Analysis     243SCX-RP/MS/MS     245SCX/RP/MS/MS     248MudPIT     251Alternative First Dimension Approaches     254Conclusion     255References     255Development of Orthogonal 2DLC Methods for Separation of Peptides     261Introduction     261Previous Work     263Developing Orthogonal 2DLC Methods     264LC Selectivity for Peptides: Experimental Design     264Investigation of 2DLC Orthogonality for Separation of Peptides     266Geometric Approach to Orthogonality in 2DLC     271Practical 2DLC Considerations in Proteome Research     275Evaluation of Selected 2DLC MS/MS Systems     276Peak Capacity in 2DLC-MS/MS     280Considerations of Concentration Dynamic Range     282Conclusions     284Acknowledgment     284References     284Multidimensional Separation of Proteins with Online Electrospray Time-of-Flight Mass Spectrometric Detection     291Introduction     291Chromatographic Parameters     293Analyte Detection and Subsequent Analysis     293Building a Multidimensional Protein Separation     294Selection of an Ion-Exchange-Reversed-Phase Separation System for Protein-Level Separations     295Chromatographic Sorbent Considerations     295Chromatographic Behavior of Proteins     296Comprehensive Multidimensional Chromatographic Systems     296Coupling 2DLC with Online ESI-MS Detection     299Interactions between the Two Dimensions of Chromatography (Step Vs. Linear)     304Recognizing Increased Selectivity in 2DLC Separations     306Expanding Multidimensional Separations into a "Middle-Out" Approach to Proteomic Analysis     308Future Directions in Protein MDLC     311Protein Chromatography     312MS Analysis of Proteins     313Data Interpretation     314Conclusion      314References     315Analysis of Enantiomeric Compounds Using Multidimensional Liquid Chromatography     319Online Achiral-Chiral LC-LC     320Applications     323Analysis of Enantiomers in Plasma and Urine     323Amino Acids     328Physiological Fluids or Tissues     328In Food, Beverages, and Other Products     333Other Applications     334Analysis of Enantiomers from Plant and Environmental Sources     334Miscellaneous Applications     336Conclusion     338References     339Multidimensional Separation Using Capillary Electrophoresis     345Two-Dimensional Capillary Electrophoresis for the Comprehensive Analysis of Complex Protein Mixtures     347Introduction     347Previous Work     348Miniaturized IEF/SDS-PAGE     348One-Dimensional Capillary Electrophoresis for Protein Analysis     349Two-Dimensional Capillary Separations for Analysis of Peptides and Proteins     352Capillary Liquid Chromatography Coupled with Capillary Electrophoresis for Analysis of Unlabeled Peptides and Proteins     352Two-Dimensional Capillary Electrophoresis for Analysis of Proteins      352High-Speed Two-Dimensional Capillary Electrophoresis     356The Analysis of a Single Fixed Cell     358Conclusions     360Abbreviations     360References     360Two-Dimensional HPLC-CE Methods for Protein/Peptide Separation     365Introduction     365Off-line Versus Online     366HPLC Fractionation     3662D HPLC-CE     367CE-MS Detection     368Applications     370Concluding Remarks     380Acknowledgment     381References     381Industrial Applications     385Multidimensional Liquid Chromatography in Industrial Applications     387Introduction     387Principles of Multidimensional Liquid Chromatography as Applied to Polymer Analysis     390Experimental     393Analysis of Alkylene Oxide-Based Polymers     395Amphiphilic Polyalkylene Oxides     395Excipients     399Polyether Polyols     403Analysis of Condensation Polymers     406Polyamides     407Aromatic Polyesters     414Aliphatic Polyesters      417References     420The Analysis of Surfactants by Multidimensional Liquid Chromatography     425Introduction     425Analytical Characterization Methods     428CE and CGE     429SEC     430NPLC     431RPLC     433Detection Methods     4342DLC     434RPLC Coupled to SEC     435NPLC Coupled to RPLC     435Conclusions     442References     443Index     447

\ From the Publisher"It is a timely publication and present a valuable resource of scientific information on MDLC…It presents systematically gathered scientific information from a plethora of articles scattered over a wide range of sources. This effort should be appreciated by a wide audience of scientists and researchers who deal with complex separation programs in biomedical, environmental, and natural products; industrial polymers; food and other sources." (Journal of the American Chemical Society, November 12, 2008)\ \ \