Scanning Probe Microscopy: Electrical and Electromechanical Phenomena at the Nanoscale

Hardcover
from $0.00

Author: Sergei Kalinin

ISBN-10: 0387286675

ISBN-13: 9780387286679

Category: Nanoelectronics

Scanning Probe Microscopy brings up to date a constantly growing knowledge base of electrical and electromechanical characterization at the nanoscale. This comprehensive, two-volume set presents practical and theoretical issues of advanced scanning probe microscopy (SPM) techniques ranging from fundamental physical studies to device characterization, failure analysis, and nanofabrication. Volume 1 focuses on the technical aspects of SPM methods ranging from scanning tunneling potentiometry to...

Search in google:

Scanning Probe Microscopy brings up to date a constantly growing knowledge base of electrical and electromechanical characterization at the nanoscale. This comprehensive, two-volume set presents practical and theoretical issues of advanced scanning probe microscopy (SPM) techniques ranging from fundamental physical studies to device characterization, failure analysis, and nanofabrication. Volume 1 focuses on the technical aspects of SPM methods ranging from scanning tunneling potentiometry to electrochemical SPM, and addresses the fundamental physical phenomena underlying the SPM imaging mechanism. Volume 2 concentrates on the practical aspects of SPM characterization of a wide range of materials, including semiconductors, ferroelectrics, dielectrics, polymers, carbon nanotubes, and biomolecules, as well as on SPM-based approaches to nanofabrication and nanolithography.

SPM Techniques for electrical characterization. -Scanning Tunneling Microscopy and Tunneling Potentiometry. -Scanning Spreading Resistance Microscopy and Scanning Potentiometry. -Scanning Capacitance Microscopy and Nanoimpedance Microscopy. -Scanning Gate Microscopy. -Force-based SPM transport measurements: KPFM, EFM and SIM. -Piezoresponse Force Microscopy. -Ultrasonic Force Microscopy. -Microwave Microscopy. -Near Field Optical Microscopy. -Electrochemical STM. -Advanced SPM Probes for Electrical Characterization. -Electrical and electromechanical imaging at the limits of resolution. -Surface Metal Insulator Transitions. -Spin polarized STM. -STM probing of molecular transport. -Kelvin Probe Force Microscopy of atomic systems. -Single-electron transport in 1D systems. -Theoretical aspects of electrical transport imaging in molecular systems. -Friction on the atomic scale. -Mechanics on the molecular scale. -Electrical SPM characterization of materials and devices. -SPM transport in semiconductors. -SCM and KPFM of semiconductor heterostructures. -SPM characterization of Ferroelectric Materials. -SCM of operational devices. -Photoinduced phenomena in semiconductor heterostructures. -SPM characterization of III-nitrides materials. -Advanced semiconductor metrology by SPM. -Transport in organic electronics. -Electrical nanofabrication. -Direct Nanooxidation. -Ferroelectric Lithography. -Resist-based SPM oxidation techniques. -Charge deposition lithography. -Electrochemical surafecSurface Modification.